Abstract Title: Stereochemical and Mechanistic Investigation of the Reaction Catalyzed by Fom3 from *Streptomyces fradiae*, a Cobalamin-Dependent Radical S-Adenosylmethionine Methylase

Fom3, a cobalamin-dependent radical S-adenosylmethionine (SAM) methylase, has recently been shown to catalyze the methylation of carbon 2″ of cytidylyl-2-hydroxyethylphosphonate (HEP-CMP) to form cytidylyl-2-hydroxypropylphosphonate (HPP-CMP) during the biosynthesis of fosfomycin, a broad-spectrum antibiotic. It has been hypothesized that a 5′-deoxyadenosyl 5′-radical (5′-dA*) generated from the reductive cleavage of SAM abstracts a hydrogen atom from HEP-CMP to prime the substrate for addition of a methyl group from methylcobalamin (MeCbl); however, the mechanistic details of this reaction remain elusive. Moreover, it has been reported that Fom3 catalyzes the methylation of HEP-CMP to give a mixture of the (S)-HPP and (R)-HPP stereoisomers, which is rare for an enzyme-catalyzed reaction. Herein, we describe a detailed biochemical investigation of a Fom3 that is purified with 1 equiv of its cobalamin cofactor bound, which is almost exclusively in the form of MeCbl. Electron paramagnetic resonance and Mössbauer spectroscopies confirm that Fom3 contains one [4Fe-4S] cluster. Using deuterated enantiomers of HEP-CMP, we demonstrate that the 5′-dA* generated by Fom3 abstracts the C2″-pro-R hydrogen of HEP-CMP and that methyl addition takes place with inversion of configuration to yield solely (S)-HPP-CMP. Fom3 also sluggishly converts cytidylyl-ethylphosphonate to the corresponding methylated product but more readily acts on cytidylyl-2-fluoroethylphosphonate, which exhibits a lower C2″ homolytic bond-dissociation energy. Our studies suggest a mechanism in which the substrate C2″ radical, generated upon hydrogen atom abstraction by the 5′-dA*, directly attacks MeCbl to transfer a methyl radical (CH₃*) rather than a methyl cation (CH₃⁺), directly forming cob(II)alamin in the process.

Abstract Source: Wang B. et. al. (2018). Biochemistry Article ASAP DOI: 10.1021/acs.biochem.8b00693